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Visco-Elastic MHD Fluid Flow Over a Vertical 
Plate with Dufour and Soret Effects   
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Abstract—An analysis of free convective MHD visco-elastic fluid flow with heat and mass transfer over a vertical plate moving with a constant velocity 
in presence of Dufour and Soret effects has been presented. The fluid is considered to be non-Newtonian characterized by Walters liquid (Model B′). 
The surface temperature is assumed to oscillate with small amplitude about a non-uniform mean temperature. The system representation is such that 
the 𝑥̅-axis is taken along the plate and 𝑦�-axis is normal to the plate. The equations governing the fluid flow, heat and mass transfer are solved by 
perturbation technique. Analytical expressions for velocity, temperature and concentration fields, non-dimensional skin friction coefficient are obtained. 
The first-order velocity profile and skin friction coefficient are obtained numerically and illustrated graphically to observe the visco-elastic effects in 
combination of other flow parameters involved in the solution. It is observed that the flow field is significantly affected by the visco-elastic parameter in 
comparison with Newtonian fluid flow phenomena. Possible applications of the present study include engineering science and applied mathematics in 
the context of aerodynamics, geophysics and aeronautics. 
 
 Keywords: Dufour and Soret effects, Grashof number, MHD, perturbation technique, Prandtl number, Schmidt number, skin friction, visco-elastic.                   
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1  Introduction 
 

HE investigation of visco-elastic fluid flows over a 
vertical plate in presence of magnetic field has 
attracted the researchers for its application in 
various fields like geophysics, engineering 

sciences, astrophysics, biological system, soil physics, 
aerodynamics and aeronautics. The study of heat and mass 
transfer is important because of its wide applications in 
geothermal and oil reservoir engineering studies. Stokes [1] 
has studied the effects of internal friction of fluids in the 
motion of pendulum. Raptis and Kafousis [2] have studied 
the free convective MHD flow with mass transfer in porous 
medium with constant heat flux. Jha and Singh [3] have 
analyzed the  Soret  effect  on  free  convection  with    mass  
transfer in the Stokes problem for an infinite vertical plate. 
Dursunkaya and Worek [4] have studied the diffusion 
thermo and thermal-diffusion effects in transient and 
natural convection and Kafousis and Williams [5] have 
continued the same for temperature dependant forced 
convection with mass transfer. Anghel et al. [6] has 
investigated the Dufour and Soret effects on free convection 
boundary layer over a vertical surface in porous medium. 
Aboeldahab and Elbarbary [7] have studied the Hall 
current effect on MHD free convection past a semi-infinite 
vertical plate with mass transfer. Megahead et al. [8] have 
studied the similarity analysis MHD effect on free 
convection with mass transfer past a semi-infinite vertical 
plate. Postelincus [9] has analyzed the effect of magnetic 
field on heat and mass transfer for free convection from 
vertical surface in porous media with Dufour and Soret 
effects. Sedeek [10] has investigated the diffusion thermo 
and thermal diffusion effects on mixed convection with 
mass transfer in presence of suction and blowing. Chen [11]     

has analyzed heat and mass transfer in MHD free 
convection from a permeable inclined surface with variable 
temperature. Alam and Rahman [12] have studied the 
Dufour and Soret effects in MHD free convection with heat 
and mass transfer past vertical plate in porous medium. 
Nazmul and Mahmud [13] have studied the Dufour and 
Soret effects on steady MHD free convection with mass 
transfer through a porous medium in a rotating system. 
      Ibrahim et al. [14] have studied the effects of chemical 
reaction and radiation absorption on the unsteady MHD 
free convection past a semi-infinite permeable moving plate 
in presence of heat source. Ananda et al. [15] have 
investigated the thermal diffusion and chemical effects with 
simultaneous heat and mass transfer in MHD mixed 
convection with Ohming heating. Beg and Ghosh [16] have 
presented an analytical study of MHD radiation convection 
with surface oscillation and secondary flow effects. Uwanta 
et al. [17] have studied the radiative convection flow with 
chemical reaction. Uwanta et al. [18] have also analyzed the 
MHD free convection over a vertical plate with Dufour and 
soret effect. Mansour et al. [19] have investigated the effect 
of chemical reaction and thermal stratification on MHD free 
convection with heat and mass transfer over a vertical 
stretching surface in a porous medium in presence of 
Dufour and Soret effects. Oladapo [20] has studied the 
Dufour and Soret effects of transient free convection with 
radiation past a flat moving plate. 
        In this paper, we have studied the free convective 
MHD flow with heat and mass transfer over a vertical plate 
in presence of Dufour and Soret effect and observe the 
visco-elastic effects on the fluid flow field along with other 
flow parameters. The visco-elastic fluid flow is 
characterized by Walters liquid (Model B′). 
The constitutive equation for Walters liquid (Model B′) is 

       T 
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    𝜎𝑖𝑘 = −𝑝𝑔𝑖𝑘 + 𝜎𝑖𝑘′,    𝜎𝑖𝑘′ = 2𝜂0𝑒𝑖𝑘 − 2𝐾0𝑒′𝑖𝑘                       (1) 
where  𝜎𝑖𝑘   is  the stress tensor, p is isotropic pressure, 𝑔𝑖𝑘 is  
the metric tensor of a fixed co-ordinate system xi, vi is the 
velocity vector, the contravariant form of e′ik is given by                                                                                                                                                             
𝑒′𝑖𝑘 = 𝜕𝑒𝑖𝑘

𝜕𝑡
+ 𝑣𝑚𝑒𝑖𝑘 ,𝑚− 𝑣𝑖 ,𝑚 𝑒𝑖𝑚 − 𝑣𝑖 ,𝑚 𝑒𝑚𝑘                           (2) 

It is the convected derivative of the deformation rate tensor 
eik defined by 
2eik = vi,k +vk,i                                                                     (3)   
Here η0 is the limiting viscosity at the small rate of   
shear which is given by  
𝜂0 = ∫ 𝑁(𝜏)𝑑𝜏  𝑎𝑛𝑑   𝑘0

∞
0 = ∫ 𝜏𝑁(𝜏)𝑑𝜏∞

0                                  (4) 
N(τ) being the relaxation spectrum as introduced by 
Walters [21, 22]. This idealized model is a valid 
approximation of Walters liquid (Model B′) taking very 
short memories into account so that terms involving 
∫ 𝜏𝑛∞
0 𝑁(𝜏)𝑑𝜏,    𝑛 ≥ 2                                                               (5)                                                                                                                                                            

have been neglected. 
 
2  Mathematical formulation 
 
The region of unsteady free convective MHD flow of a 
visco-elastic electrically conducting fluid characterized by 
Walters liquid (Model B′) with heat and mass transfer over 
a semi-infinite region perpendicular to a vertical plate, 
moving with a constant velocity U, in the  presence of 
Dufour and Soret effects is considered. The 𝑥̅-axis is taken 
along the length of the porous plate and 𝑦�-axis is 
perpendicular to it. Let 𝑢� be the velocity of the fluid along 
𝑥̅ direction. The surface temperature is assumed to oscillate 
with small amplitude about a non-uniform mean 
temperature. The variation of density with temperature and 
concentration is considered only in the body force term so 
that under the above assumption, all the physical quantities 
are functions of 𝑦� and  𝑡�. The governing equations for the 
fluid flow are as follows: 
 
momemtum equation: 
 
𝜕𝑢�
𝜕𝑡̅

= 𝜈 𝜕2𝑢�
𝜕𝑦�2

− 𝐾0
𝜌

𝜕3𝑢�
𝜕𝑡̅𝜕𝑦�2

+ 𝑔𝛽(𝑇� − 𝑇�∞)− 𝜎𝐵02𝑢�
𝜌

+ 𝛽̅(𝐶̅ − 𝐶∞̅)       (6) 
 
energy equation: 
 
𝜕𝑇�

𝜕𝑡̅
= 𝜅

𝜌𝐶𝑝

𝜕2𝑇�

𝜕𝑦�2
− 1

𝜌𝐶𝑝

𝜕𝑞𝑟
𝜕𝑦�

+ 𝐷𝑚𝐾𝑟
𝐶𝑠𝐶𝑝

𝜕2𝐶̅

𝜕𝑦�2
                                               (7) 

 
 
concentration equation: 
 
𝜕𝐶̅

𝜕𝑡̅
= 𝐷 𝜕2𝐶̅

𝜕𝑦�2
+ 𝐷𝑚𝐾𝑟

𝑇𝑚

𝜕2𝑇�

𝜕𝑦�2
                                                                (8) 

where, β is the volumetric co-efficient of expansion for heat 
transfer, 𝛽̅ is the volumetric co-efficient of expansion for the 
fluid, 𝐵0 is the magnetic field,  𝑡� is the time, 𝑇� is the 

temperature  of the fluid, 𝑇𝑚 is the mean temperature of the 
fluid, 𝑇�∞ is the temperature of fluid at infinity, 𝑇�𝑤 is the 
temperature of the plate, 𝐾𝑟 is the thermal diffusion, 𝐶𝑝 is 
the specific heat at constant pressure, 𝐶𝑠 is the concentration 
susceptibility, 𝐶̅ is the mass concentration, 𝐶𝑤̅ is the 
concentration at the plate surface, C�∞ is the concentration in 
fluid far away from plate, 𝐷 is the molecular diffusivity, 
𝐷𝑚  is the coefficient of mass diffusivity and κ is the thermal 
conductivity.  
The initial boundary conditions are 
 
𝑦� = 0:   𝑢� = 𝑈,𝑇� = 𝑇�𝑤 + 𝜀𝑒𝑖𝜔�𝑡̅(𝑇�𝑤 − 𝑇�∞),   
               𝐶̅ = 𝐶𝑤̅ + 𝜀𝑒𝑖𝜔�𝑡̅(𝐶𝑤̅ − 𝐶∞̅)          
𝑦� → ∞ ∶    𝑢� → 0,𝑇� → 0,𝐶̅ → 0                                                 (9) 
We introduce the dimensionless quantities 
 
𝑢 = 𝑢�

𝑈
 , 𝑦 = 𝑦�𝑈

𝜈
 , 𝑡 = 𝑡̅𝑈2

𝜈
  ,𝐺𝑟 = 𝑔𝛽𝜈(𝑇�𝑤−𝑇�∞)

𝑈3
 ,    

𝐺𝑚 = 𝑔𝛽′𝜈(𝐶𝑤̅−𝐶∞̅)
𝑈3

  ,𝑀 = 𝜎𝐵02𝜈
𝜌𝑈2

 ,𝑃𝑟 = 𝜇𝐶𝑝
𝜅

,   

𝐾2 = 16𝑎𝜎∗𝜈2𝑇�∞
3

𝜅𝑈2
 ,𝐷𝑢 = 𝐷𝑚𝐾𝑟(𝐶𝑤̅−𝐶∞̅)

𝐶𝑠𝐶𝑝𝜈(𝑇�𝑤−𝑇�∞)
 ,  𝑆𝑟 = 𝐷𝑚𝐾𝑟(𝑇�𝑤−𝑇�∞)

𝑇𝑚𝜈(𝐶𝑤̅−𝐶∞̅)
 ,  

𝑆𝑐 = 𝜈
𝐷

 ,𝜔 = 𝜔�𝜈
𝑈2

 , 𝜃 = 𝑇�−𝑇�∞
𝑇�𝑤−𝑇�∞

 ,𝐶 = 𝐶̅−𝐶∞̅
𝐶𝑤̅−𝐶∞̅

.                                (10) 
where 𝐺𝑟 is the thermal Grashof number, 𝐺𝑚 is the mass 
Grashof number, M is the Hartmann number, 𝐾1 = 𝐾0𝑈2

𝜌𝜈2
 is 

the visco-elastic parameter, 𝐾2 is the thermal radiation 
conduction number, 𝑆𝑐 is the Schmidt number, 𝑃𝑟 is the 
Prandtl number, 𝑆𝑟 is the Soret number, 𝐷𝑢 is the Dufour 
number, 𝜈 is the kinematic viscosity, θ is the dimensionless 
temperature, C is the dimensionless concentration.                                                                                                                        
The thermal radiation flux gradient may be expressed as  
−𝜕𝑞𝑟

𝜕𝑦
= 4𝑎𝜎∗�𝑇�∞

4 − 𝑇�4�                                                          (11) 

where,  qr is the radiative heat flux, 𝑎 is the absorption 
coefficient of the fluid and 𝜎* is the Stefan-Boltzmann 
constant. 
By Taylor’s expansion, we get 
𝑇�4 = 4𝑇�∞

3𝑇� − 3𝑇�∞
4                                                                (12) 

Using (10) to (12) in (6) to (8), we get  
𝜕𝑢
𝜕𝑡

= 𝜕2𝑢
𝜕𝑦2

− 𝐾1
𝜕3𝑢
𝜕𝑡𝜕𝑦2

+ 𝐺𝑟𝜃 − 𝑀𝑢 + 𝐺𝑚𝐶                               (13) 
𝜕𝜃
𝜕𝑡

= 1
𝑃𝑟

𝜕2𝜃
𝜕𝑦2

− 𝐾2𝜃 +𝐷𝑢
𝜕2𝐶
𝜕𝑦2

                                                    (14) 
𝜕𝐶
𝜕𝑡

= 1
𝑆𝑐

𝜕2𝐶
𝜕𝑦2

+ 𝑆𝑟
𝜕2𝜃
𝜕𝑦2

                                                                 (15) 
The relevant boundary conditions are 
𝑦 = 0:   𝑢 = 1  ,𝐶 = 1 + 𝜀𝑒𝑖𝜔𝑡  ,𝜃 = 1 + 𝜀𝑒𝑖𝜔𝑡    
𝑦 → ∞ ∶ 𝑢 → 0, 𝜃 → 0 ,𝐶 → 0.                                              (16) 
 
3 Method of solution 
 
For 𝜀 ≪ 1,  we apply the perturbation scheme   
𝑓(𝑦, 𝑡) = 𝑓0(𝑦) + 𝜀𝑒𝑖𝜔𝑡𝑓1(𝑦) + 𝑜(𝜀2)                                    (17) 
to equations (13) to (15) where 𝑓 represents 𝑢, 𝜃 and 𝐶. 
Comparing the coefficients of various powers of 𝜀 and 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013                                                                    13 
ISSN 2229-5518 

IJSER © 2013 
http://www.ijser.org 

neglecting those of second and higher powers of  𝜀, we get 
the following equations. 
 
3.1 Zeroth order equations 
 
𝑑2𝑢0
𝑑𝑦2

−𝑀𝑢0 = −𝐺𝑟𝜃0 − 𝐺𝑚𝐶0                                                 (18) 
𝑑2𝜃0
𝑑𝑦2

− 𝐾2𝑃𝑟𝜃0 = −𝑃𝑟𝐷𝑢
𝑑2𝐶0
𝑑𝑦2

                                                    (19) 
1
𝑆𝑐

𝑑2𝐶0
𝑑𝑦2

+ 𝑆𝑟
𝑑2𝜃0
𝑑𝑦2

= 0                                                                 (20) 

 
3.2 First order equations 
 
(1− 𝑖𝜔𝐾1) 𝑑

2𝑢1
𝑑𝑦2

− (𝑀 + 𝑖𝜔)𝑢1 = −𝐺𝑟𝜃1 − 𝐺𝑚𝐶1                 (21) 
𝑑2𝜃1
𝑑𝑦2

− 𝑃𝑟(𝐾2 + 𝑖𝜔)𝜃1 = −𝑃𝑟𝐷𝑢
𝑑2𝐶1
𝑑𝑦2

                                       (22) 
𝑑2𝐶1
𝑑𝑦2

− 𝑖𝜔𝑆𝑐𝐶1 = −𝑆𝑟𝑆𝑐
𝑑2𝜃1
𝑑𝑦2

                                                    (23) 

The modified boundary conditions are 
𝑦 = 0 ∶  𝑢0 = 1,𝜃0 = 1 ,𝐶0 = 1 ,𝑢1 = 0,𝜃1 = 1,   
               𝐶1 = 1.   
𝑦 → ∞ ∶ 𝑢0 → 0,  𝜃0 → 0, 𝐶0 → 0 ,  𝑢1 → 0,  
                𝜃1 → 0,  𝐶1 → 0.                                                          (24) 
Solutions of the equations (18) to (23) are obtained as 
follows: 
𝑢0 = 𝑏1𝑒−√𝑀𝑦 + 𝑏2𝑒−𝐷2𝑦                                                         (25) 
𝜃0 = 𝑒−𝐷2𝑦                                                                                (26) 
𝐶0 = 𝑒−𝐷2𝑦                                                                                (27) 
𝑢1 = 𝑏7𝑒−𝐿𝑦 + 𝑏8𝑒−𝐻1𝑦 + 𝑏9𝑒−𝐻2𝑦 + 𝑏10𝑒−𝐺1𝑦 +  𝑏11𝑒−𝐺2𝑦  (28) 
𝜃1 = 𝑏5𝑒−𝐻1𝑦 + 𝑏6𝑒−𝐻2𝑦                                                          (29) 
𝐶1 = 𝑏3𝑒−𝐺1𝑦 + 𝑏4𝑒−𝐺2𝑦                                                           (30) 
The velocity profile u is given by 
𝑢 = 𝑢0 + 𝜀𝑒𝑖𝜔𝑡𝑢1                                                                      (31) 
The non-dimensional skin friction coefficient 𝜎0 on the plate 
y=0 is given by 
𝜎0 = �𝜕𝑢

𝜕𝑦
− 𝐾1

𝜕2𝑢
𝜕𝑡𝜕𝑦

�
𝑦=0

={𝑢0′+ 𝜀𝑒𝑖𝜔𝑡(𝑢1′ − 𝑖 𝜔𝐾1𝑢1′)}𝑦=0    (32) 

The non-dimensional rate of heat transfer in terms of 
Nusselt number Nu is given by, 
𝑁𝑢 = �𝜕𝑇

𝜕𝑦
�
𝑦=0

= (𝑇0′+ 𝜀𝑒𝑖𝜔𝑡𝑇1′)𝑦=0                                       (33)      

The non-dimensional rate of mass transfer in terms of 
Sherwood number 𝑆ℎ is given by  
 𝑆ℎ = �𝜕𝐶

𝜕𝑦
�
𝑦=0

= (𝐶0′+ 𝜀𝑒𝑖𝜔𝑡𝐶1′)𝑦=0                                      (34)  

where dash denotes differentiation w.r.t. y. 
The constants are obtained but not given here due to 
brevity.                                   
 
4 Results and discussion 
 
The object of the present paper is to study the effects of 
visco-elasticity on the free convective MHD flow with heat  
and mass transfer over a vertical plate in presence of 
Dufour and Soret effects along with other flow parameters. 

The visco-elastic effect is exhibited through the non zero 
values of the non-dimensional parameter K1. The 
Newtonian fluid flow mechanism can be illustrated 
throughout the study by considering K1=0 and it is worth 
mentioning that these results show conformity with that of 
Uwanta et al. [18].  
To understand the physics of the problem the first order 
velocity 𝑢1 is depicted against y in the figures 1 and 2.  The 
behavior of skin-friction coefficient 𝜎0 against M, Sc, Sr, Du 
and Pr on the plate y=0 is illustrated in the figures 3 to 12. 
The numerical calculations are to be carried out for K=.1, 
𝐾2=.2, 𝜔𝑡 = 𝜋

2
,  𝜔 = 1, 𝜀=.001 throughout the discussion. 

For externally cooled plate (𝐺𝑟 > 0), the first order velocity 
profile u1 (figure 1) exhibits an accelerating trend with the 
growing effect of visco-elasticity. It is also observed that the 
velocity field enhances near the plate y=0 and then 
diminishes with the increasing values of y. 
For externally heated plate (𝐺𝑟 < 0), the first order velocity 
profile u1 (figure 2) reveals a decelerating trend with the 
growing effect of visco-elasticity. Also the velocity field 
decreases near the plate y=0 and then rises with the 
increasing values of y. 
Figure 3 depicts that the skin friction coefficient 𝜎0 against 
the magnetic parameter M decreases with the growing 
effect of the visco-elastic parameter K1 and the magnetic 
parameter M as well for externally cooled plate  (𝐺𝑟 > 0) .  
From figure 4, it is observed that the skin friction coefficient 
decreases with the enhancement of the magnetic parameter 
M but increases with the growth of the visco-elastic 
parameter K1 for externally heated plate (𝐺𝑟 < 0). 
The behavior of the skin friction coefficient against Schmidt 
number is illustrated in figures 5 and 6. It is observed from 
figure 5 that for externally cooled plate (𝐺𝑟 > 0), the skin 
friction coefficient increases up to Sc=.85  and then 
decreases with the growing effect of the visco-elastic 
parameter K1. It is also found that the skin friction 
coefficient decreases with the increasing values of Schmidt 
number Sc.  
An opposite nature in the behavior of the skin friction 
coefficient against Sc is observed from figure 6 for 
externally heated plate (𝐺𝑟 < 0). 
Figure 7 illustrates that the skin friction coefficient against 
Soret number Sr diminishes with the growing effect of the 
visco-elastic parameter K1 and the Soret number Sr as well 
for externally cooled plate (𝐺𝑟 > 0). 
 Figure 8 depicts that the skin friction coefficient against 
Soret number Sr enhances with the growing effect of the 
visco-elastic parameter K1 for externally heated plate 
(𝐺𝑟 < 0) but it decelerates with the rise of Soret number Sr. 
Figure 9 shows that the skin friction coefficient against 
Dufour number Du diminishes with the growing effect of 
the visco-elastic parameter K1 and the Dufour number Du 
as well for externally cooled plate (𝐺𝑟 > 0). 
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Figure 10 exhibits that the skin friction coefficient against  
Dufour number Du accelerates with the growing effect of 
the visco-elastic parameter K1 for externally heated plate 
(𝐺𝑟 < 0) but it decelerates with the rise of Dufour number 
Du. 
It is observed from figure 11 that the skin friction coefficient 
against Prandtl number Pr decelerates with the rising effect 
of the visco-elastic parameter K1 and the Prandtl number Pr 
as well for externally cooled plate (𝐺𝑟 > 0). 
Figure 12 reveals an accelerating trend of the skin friction 
coefficient against Prandtl number Pr with the growth of 
the visco-elastic parameter K1  and Prandtl number Pr as 
well for externally heated plate (𝐺𝑟 < 0). 
The temperature and concentration fields are not affected 
by the growth of visco-elastic parameter.   
 
 
 
 
 
 
 
 

 
Fig 1: First order velocity profile u1 against y for M=1, Du=.1, Pr=.2,   

Gr= 3, Gm= 3, Sc=1, Sr=.1 

Fig 2: First order velocity profile u1 against y for M=1, Du=.1, Pr=.2,  
Gr=-3, G m=3, Sc=1, Sr=.1 

 
 

Figure 3: Skin friction coefficient σ0 against M for Du=.1, Pr=.2, Gr=3, 
Gm=3, Sc=1, Sr=.1 

 
Figure 4: Skin friction coefficient σ0 against M for Du=.1, Pr=.2, Gr=-3, 

Gm=3, Sc=1, Sr=.1 
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Figure 5:  Skin friction coefficient σ0 against Sc for Du=.1, M=1, Pr=.2, 

Gr=3, G m=3, Sr=.1 

 
Figure 6: Skin friction coefficient σ0 against Sc  for Du=.1, M=1, Pr=.2, 

Gr=-3, G m=3, Sr=.1 

 
Figure 7: Skin friction coefficient σ0 against Sr for Du=.1, M=1, Pr=.2, 

Gr=3, G m=3, Sc=1 

 
Figure 8: Skin friction coefficient σ0 against Sr for Du=.1, M=1, Pr=.2, 

Gr=-3, G m=3, Sc=1 

 
Figure 9: Skin friction coefficient σ0 against Du for Sr=.1, M=1, Pr=.2, 

Gr=3, G m=3, Sc=1 

Figure 10: Skin friction coefficient σ0 against Du for Sr=.1, M=1, Pr=.2, 
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=1

 
Figure 11: Skin friction coefficient σ 0 against Pr for Du=.1, M=1, Gr=3, 

Gm=3, Sr=.1, Sc=1. 
 

 
Figure 12: Skin friction coefficient σ 0 against Pr for Du=.1, M=1, Gr=-3, 

Gm=3, Sr=.1, Sc=1. 
 
5  Conclusion 
 
An analysis of free convective MHD flow of a visco-elastic 
fluid with heat and mass transfer over a vertical plate in 
presence of Dufour and Soret effects is presented. 
From this study, we make the following conclusions: 
 The velocity field is considerably affected by the visco-

elastic parameter along with other flow parameters at 
all points of the fluid flow region.  

 The first order velocity profile exhibits an accelerating 
trend with the growing effect of visco-elasticity for 
externally cooled plate but an opposite trend is 
observed for externally heated plate. 

 The skin friction coefficient on the plate is significantly 
affected by the visco-elastic parameter along with other 
flow parameters. 

 The temperature and concentration fields are not 
affected by the growth of visco-elasticity.  

. 
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